If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15z^2+11z+2=0
a = 15; b = 11; c = +2;
Δ = b2-4ac
Δ = 112-4·15·2
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-1}{2*15}=\frac{-12}{30} =-2/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+1}{2*15}=\frac{-10}{30} =-1/3 $
| 35=x-12/12*100 | | y²-9y-20=0 | | x^2=x+16 | | -3+14=17x-5-16x | | 5(n+3)=3×1-2n | | 7x-11=9x+2 | | 8=3/4m-6 | | 2(x^2-9x+8)=0 | | 35=x+0.0925x | | 32-12x-9x^2=0 | | 1/2(x+4)-3/4(x+2)=1/4 | | x=1.5иx=2.5 | | 6x-11=-7 | | .o41=1 | | 7x-2x^2-3=0 | | x=X2+8 | | 4(x+2)-(3x-7)=4(x+8) | | .04Xx=1 | | 6(7x+7)=7(6x+6 | | 455=180x+1.5x+3x+x | | 12-6•((1/3)•x+3)=4x | | x^2+2x–80=0 | | x2+2x–80=0 | | 5(4x-5)-23=-4(3x-4) | | h2+2h–80=0 | | 16-3x=4(x+28) | | 50x^2+5x-120=0 | | 4x+6=2(1,5x+14) | | 10/4=3/x | | /x2-36=8 | | 6d+10=d+25 | | 1X-(5x+3)=5 |